IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Hyperbolic Coxeter groups for triangular Potts models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27 6963
(http://iopscience.iop.org/0305-4470/27/21/013)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 23:07

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen. 27 {1994) 6963-6986. Printed in the UK

Hyperbolic Coxeter groups for triangular Potts models™

J-M Maillard and G Rollet

Laboratoire de Physique Théorique et des Hautes Energies, Unité associée au CNRS (UA 230),
Université de Paris 6-7, Tour 16, 1 étage, boite 126, 4 Place Jugsiew, F-75232 Paris Cedex 05,
France

Received 20 April 1994, in final form 2 July 1994

Abstract. The symmetry groups, generated by the inversion relations of lattice models of
statistical mechanics on triangular lattices, are analysed for vertex models and for the standard
scalar Potts model with two- and three-site interactions. These groups are generated by three
inversion relations and are seen to be generically very large omes: hyperbolic groups. Two
situations for which the representations of these groups degenerate inte smaller ones, hopefully
compatible with integrability, are considered. The first reduction for the vertex triangular model
corresponds fo the situation where the vertex of the trangular model coincides with the left-
or right-hand side of a Yang-Baxter relation. In this case the representation of the group is
isormorphic, up to a semi-direct product by a finite group, to Z x Z. The second reduction for
g-~state Potts models occurs for particular values of g, the so-called Tutte-Beraha numbers. For
this model, algebraic varieties, including the known ferromagnetic critical variety, happen to be
invariant under such large groups of symmetries,

As a byproduet, this analysis provides nice birational representations of hyperbolic Coxeter
groups,

1. Introduction

In previous papers [1, 2] it has been shown that there exist non-trivial, nonlinear symmetries
acting on the parameter space of lattice models of statistical mechanics generated by the
so-called inversion relations [3-6]. These nonlinear groups of symmetries appeared as
powerful tools to study integrable models in lattice statistical mechanics, for instance to
find the critical varieties of their phase diagrams [7]. These symmetry groups can also be
seen as symmetries of the Yang-Baxter equations (or star—triangle equations, when dealing
with spin models) and their higher-dimensional generalizations. It is important to note
that these groups exist as symmetry groups of lattice models even when one is no longer
restricted to an integrable framework [8,9].

In this point of view, the straight, but tedious, analysis of a three-dimensional model
through transfer-matrix formalism, or any other classical method of lattice statistical
mechanics is replaced by an analysis of the transformations corresponding to the symmetries,
acting in the parameter space and therefore, at first sight, less sensitive to the lattice space
and of course even to the dimenston of the lattice.

However, in both cases, integrable or not, known in the literature, a drastic difference
seems to appear between two- and three-dimensional models, suggesting a way to
understand the obstruction for three-dimensional integrability associated with generic
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three-dimensional symmetry groups, and also suggesting giving an algebraic definition
to the notion of the dimension of the model. In this framework the dimension of
the lattice re-emerges through the ‘size’ of the symmetry group. As far as two-
dimensional models are concerned, the symmetry groups known in the literature are
either finite groups [10.11] or groups isomorphic to products of Z up to a semi-direct
product by a finite growp [8,11,12]. Whereas for lattice models of dimension three,
these symmetry groups are much larger: generically they are free groups with three
generators. With such symmetry groups, the very existence of solutions of the tetrahedron
equationst having a ‘generic three-dimensional symmetry’ seems problematic [12]: the
only possibility for solutions of the tetrahedron equations are probably cases where the
representations of such ‘large’ groups degenerate into products of Z or even into finite
groups [16, 17].

It will be shown here that the analysis of the symmetry group of models on trianguiar
lattices weakens this opposition between dimensions two and three. More precisely,
this study suggests that the coordination number of the lattice could be a parameter
more relevant for the structure of the symmetry group than the lattice dimension. In
the following, we will analyse a vertex model on a triangular lattice, and the standard
scalar g-state Potts model with two- and three-spin interaction [18]. Generically, their
symmetry groups are free groups with two generators. One recovers a situation similar
to the one encountered in dimension three; these models on a triangular lattice thus
provide examples giving hints for the analysis of such large symmetry groups in dimension
three.

Moreover, these hyperbolic Coxeter groups of symmetries can actually degenerate into
more ‘reasonable’ groups leaving room for integrability in two cases: one corresponding to
a Z-invartant-like situation [19] and another one, reminiscent of the occurrence of Tufte—
Beraha numbers [20].

Finally we will consider the consequences of these symmetries, with a special emphasis
on criticality conditions. Actually, many criticality conditions have been conjectured in the
literature of lattice models of statistical mechanics, and of course all these conjectures
were algebraic [21,9,22). However, when cxactly proved, they were always related
to some integrability of the model, the algebraicity thus being a consequence of the
integrability [23]; with a noticeable exception: the (self-dual) critical variety given by
Wu [18,24], on the two- and three-site Potts model on the triangular lattice, which we
revisit here.

Here we will analyse this algebraic variety, which is a critical condition in some
‘ferromagnetic region’ [24], but is not related to any simple} ‘Yang-Baxter-like integrability’.
Moreover, we will discuss the status of other remarkable varieties emerging from this
algebraic study,

2. Symmetries of lattice models

Let us recall the symmetry group generated by the inversion relations for lattices of
coordination number six, first on the cubic three-dimensional vertex model [16,17] and
then on the triangular lattice.

1 Generalizations of the Yang-Baxter equations in dimension three [8, 13-15].

1 If a Yang-Baxter integrability exists for this model it cannot be simply parametrized in terms of the elliptic or
rational curves one is used to in exactly solvable models, or even surface products of corves (see the solution of
the star-triangle for the chiral Potts modet [10]). One would have a much more involved parametrization as far
as effective algebraic geometry is concerned.
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2.1, Inversion relations and the group Iip

Let us consider a vertex model on a three-dimensional cubic lattice of size M x M. With each
bond is associated a variable with ¢ possible states. A Boltzmann weight w(i, j, k, I, m, n)
is assigned to each vertex configuration [25], and can be represented pictorially by

The ¢® homogeneous weights w(i, f, k, I, m, n) are first arranged in a g° x ¢° matrix R of
entries: '
RYE = w(i, j k0, m,n).

One may [17] introduce an involution / which transforms R into /R according to

§ : hialy ptiatn _ 5 shogh ol
UR)mazrrs R.rum =A 31'1 812 st
0,002,063

where A is an arbitrary multiplicative factor. This relation can be represented pictorially:

— i1 ofy oy
- A’ail ajz 31'3 ’

The inversion transformation / amounts to taking the inverse of the g° x g* matrix R. One
also introduces the partial transpositions £, & and 73 with

ity _ phiiafs
(n R).f:iz.fa - Rilhjs
and similar definitions for 7> and 7.
For three-dimensional vertex models, one has four such involutions acting as symmetries
of the R-matrix [17]:
L=1 L=nltt L=tlty h=t1ht. 2.1)

These four involutions generate an infinite discrete group sp [17]. Let us note that the full
transposition is nothing but the product ¢ = #;f243.

Considering the parameter space as a projective space (the entries of the R-matrix are
homogeneous parameters), the elements of the group I'sp have a nonlinear representation
in terms of birational transformations. This group of symmetyy of the parameter space of
the model is very large. This is in fact a fiyperbolic Coxeter group [26-31].

Remark. coming back to integrability, it has been shown that the tetrahedron equations
(generalization in three dimensions of the Yang-Baxter equations [9, 13, 14,32]) do have
an infinite group of symmetry generated by four involutions Ky, Ka, K3, K4 {17]. They
satisfy various relations, for instance (K K:K3Ks)* = Zd, where Td denotes the identity
transformation. This group of symmetry of the tetrahedron eguation is quite ‘monstrous’
since the number of elements of length smaller than ! is of exponential growth with respect
to /, unlike the symmetry group of the Yang—Baxter equations which identifies with the
affine Coxeter group A% [16,17,27).
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2.2. Inversion relations on the triangular lattice

For the triangular lattice the vertex Boltzmann weight {18] also reads w({i, j, &, !, #, n)} and
can be represented by

k m
% N
J n

Similarly to the cubic vertex model [16, 17], the weights may be arranged in a ¢° x ¢°
matrix. However, for the triangular model there are only three inversion transformations,
I, I, ls, which actually coincide with three of the four of the cubic lattice {(2.1). The
fourth transformation 14 corresponds to a non-planar picture, which is meaningless for the
triangular lattice. Let us denote I'iag the symmetry group generated by |y, b, I3. As will
be shown in the following, using the equivalence between vertex and spin representation
for this model {18), this group ailso has generically an exponential growth.

Let us recall the resulis obtained by Baxter, Temperley and Ashiey on the triangular
vertex and spin models [18]. They noticed that the integrable case discovered by Keliand
for a triangular vertex model (a 20-vertex model) [33], actually corresponds to the following
situation: the vertex Boltzmann weight can alternatively be seen as either a left- or right-hand
side of a Yang—Baxter equation {more generally this refers to the Z-invariance concept) [19]:

B [
R
% = - . 2.2)
[ B

In the framework of this very model, they brought out the correspondence between such
a veriex model and the standard scalar g-state Potts model for anisotropic triangular
lattices with two- and three-site interaction (only on up-pointing triangles) through the Lieb—
Temperley algebra [18, 34]1. In terms of the two- and three-site interaction spin model, these
integrability conditions correspond to having no three-spin interaction and also to being at
the transition temperature [18].

In the following, the symmetry group of both vertex and spin models on triangular
lattice will be analysed.

1

3. Triangular vertex model

As far as the triangular vertex model is concerned, an interesting subcase pops out, for which
the group no longer has exponential growth. 1t occurs when the vertex of the triangular
model spreads out into three square vertices (A, B, C) (i.e. the left- or right-hand sides of
a Yang-Baxter relation}:

c

I

(KR
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This model is a generalization of model (2.2), without assuming any Yang—Baxter
integrability condition.

In order to write the three inverse transformations b, Iy, Iz restricted to this subcase
(3.1), let us introduce | and J, the two inverse transformations on the square lattice
vertex model [17]. A Boltzmann weight w(i, j, k,[) is assigned to each square vertex
configuration [25]:

The g* homogeneous weights w(i, j, &, ) are first arranged in a ¢* x ¢* matrix R:
RS =w(i, j, kD).

We introduce (see [1, 16, 17]) the inverse I by
D Rag (RS =88] = ) (R), R
a8 .

and the other inverse J by

Zﬁ: R RS = 8}, 8] = Zﬁ:um;ﬁ R
[+ o,

Similarly to the sitvation occurring for the cubic lattice, | and J are two involutions related
by a partial transposition (denoted # in [35]) of the indices: J = #; 11;. Namely, # reads
(hRy) = Ry
The three inverse transformations l,’s read
i (A, B,C)=(l14,JC,JdB)
IL{(A, B,C)=(IC,IB,JA)
l; (A, B,C) = (JB,JA,IC)

as shown in the following picture:

Let us now introduce the following transformations iy = I b, iz = I 1y, i3 = k I, which
are generically of infinite order:

i1 (4, B,C) = {K™'C, KA, B)
i2(4, B,C)=(C,K™'4,KB) where K=1J.
i1 (A, B,C) = (KC,A,K'B)

Obviously group Myang is also generated by iy, Iz, I3, up to a semi-direct product by a finite
group. These new generators do not comunute, but they only differ from the generators
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Iy, 15, I5, which commute two by two, by the 3-cycle, r(4, B,C) = (C, A, B). These
three generators I;,7;, I3 act on a triplet (A, B, C) as follows:
Iy (A, B,C) = (A,K™' B, KC)
T, (A, B, C) = (K4, B,K™IC)
I;(A,B,C)=(K'4,KB, C} .
One easily notes the following relations:
Tir=i; rI =103 Lr=1i rI; =1 Lir=i riz=1y.

Because of the commutation of its generators, the group generated by I, 2z, I is, at first
sight, the following group:
{If'l;zfgﬁ,(n1, ny,n3) €L xZ x E}.
Since I} I; I3 = identity, one has n; +ny+n3 = 0. Thus the group generated by I, I, I;
is isomorphic to Z x Z. As a direct consequence Tyjang 1S iSomorphic to Z % Z upto the
semi-direct product by a finite group [7,36].
Heuristically, one can understand this subcase as follows: the symmetry group Tyang

of the ‘six-legs’ Boltzmann weight, R, becomes quite similar to the symmetry group of the
Yang-Baxter equations, which is known to be isomorphic to Azl) [17].

4, Triangular spin model

4.1, Notations for the spin model

Let us now consider the standard scalar g-state Potts model on a triangular lattice with
nearest-neighbour interaction and three-spin interaction only on the up-pointing triangles:

ONVON S ON N DN
N O\ O\ O\
SONSON OO\ O,
O\ O\ O\ ONS
JONSONSONSONON

The partition function of the models reads:

Z = Z 1—[ eKI aaf.oj- I—[ eK"‘ 5"1'”& ]—[ eKB a"k-"’f 1_[ eK 8’[4’} 'suj.u',', . (4.1)

lov} (i) (.5 (k1) {upt)
The first three products denote the product over the edge two-site interaction Boltzmann
weights along the three directions of the triangular model, and the last product denotes the
product of all up-pointing triangles of the three-site interaction Boltzmann weights. The
sum is taken over all spin configurations.
In this framework one can now introduce the following notations:

x; = e i=1273

x =ef (4.2)

Yy=xxiX2X3— (X1 +x2+x3) + 2.
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Of course for ¢ = 2, the model degenerates into the nearest-neighbour interaction triangular
Ising model since the three-site interaction becomes irrelevant. Therefore one will not
consider this g = 2 case in the following (even if most of the results one will get are also
valid in this very case).

4.2, Duality transformation

Let us recall that on this model a duality transformation does exist [18, 24], With notations
(4.2) this duality, denoted D, reads

xf~1

x—x =1+g

y
* * * 2
D x_>x*=xl+x2+*x3* *2+Q/)’ 43)
X1 X3 X3

2
y—y =L

¥
This duality is associated with a rotation of 180° of the corresponding vertex model on a
trianguiar lattice through the correspondence detailed in [18]. D is an involution,

Introducing well suited homogeneous variables, the duality transformation D can be

represented as a linear transformation Dy (see section (4.6)), which satisfies the relation
D? = g?Id, where Td denotes the identity transformation. The hyperplanes stable by Dy
correspond to eigenforms assoclated with eigenvalues £g. The eigenspace corresponding
to g is of dimension four, the associated eigenplanes reading

xxixzxs—(x1+x2+x)+g+2=0 (4.4)
XX XX —Xxi+x+x+g—-2=0 with {i, j,k} ={1,2,3}. (4.5)

The eigenform associated with eigenvalue —g reads
Ix;Ing—(Jq+JC2+JC3)+2—Q=O. (46)

The two self-dual varieties symmetric under permutations of 1,2 and 3 ((4.4) and (4.6))
have already been introduced in [18, 24]. They can respectively be written as follows:

y=-—q and y=gq.

Hyperplane (4.6) is a subvariety of the critical manifold in some ferromagnetic region [24],
whereas (4.4} has no such property. Let us notice that hyperplane (4.6) is the only variety
stable point by point by duality D.

Note that the well known case, of no three-site interaction, (that is, x = 1) is not stable}
under D. Namely, variety x = 1 becomes

it xxntunan-—n-—xn-—x-xxxnntl)y
+g 1 — Dz —Dixs =D =0. 4.7

4.3. Disorder solutions

Disorder varieties are algebraic varieties for which dimensional reductions occur for vertex
or spin models, thus enabling us to calculate exactly physical quantities such as partition

t In particular, one does not recover for x = 1 the Kramers—-Wannier duality for Potts models [22]: Kramers—
Wannier duality maps the triangular lattice onto the honeycomb lattice.
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functions, correlation functions ... [36, 37]. A straightforward calculation, using a ‘disorder
criterion’ explained in [38)], vields the following disorder conditions:

xxixpxz—(+tntn)tl-g+grn=>0 i=1,273, 4.8)

When there is no three-site interaction (x = 1) one recovers the known disorder conditions
of the two-site nearest-neighbour triangular Potts model [38, 39].

One directly sees that these disorder conditions are nothing but the vanishing conditions
of the x}’s.

As should be the case [36], these three disorder varieties have no intersection with the
ferromagnetic critical variety (4.6).

4.4. Inversion relations

The inversion relations [7,36] for the two- and three-site interaction spin model can be
represented pictorially as follows:

o

which means analytically that

Y owBy)  Hw)B e y)=Adue - 4.9)
8
The Boltzmann weight w{e, 8, ¥) of model (4.1) is invariant under a common shift of each
spin o, B and y. Therefore, ¥ can be fixed in a particular colour, namely zero. Thus the
Boltzmann weight can be represenied by a g % g matrix {o being the column index, and 8
the row index), with entries w(e, 8, 0). Equation (4.9} thus becomes the following matricial
relation:

WIW) = 1 Td,

where Td, denotes the ¢ x ¢ identity matrix, and the g x ¢ matrix Boltzmann weight W
reads

XX1X2X3 X2 X2 ... .. X2
X3 X1 1 1 i
X3 1 X1 1 |
W= 11 x
. o 1
X3 1 1 ... 1 x

Using a ‘Z,-; Fourier transformation’ [40, 41], this ¢ X ¢ matrix can be block-diagonalized
into cne 2 x 2 block and a (g — 2) X (g — 2) matrix proportional to the identity matrix,
(xy — 1) x Td;;. Then one can easily obtain the mairix inverse /(W). Note that /(W) is
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of the same form as W, x, x;, X3, x3, being changed according to the following birational
transformation /:

¢ 132 )
o 2(M: 1Y (1 +4g —2)
(xxttxxi@g—=3N—g+2) -1
2 ) — -
Jcl_:"__xx1+3e:xl(q 3) q+2=2_q_x1+x1(x 13
I xx;—1 xx—1 (4.10)
x—;‘.-xl—_l___.
P nn- D
)C]—I
X3 —> —————,
x (xx — 1}

Obviously, permutations of indices 1, 2 and 3 are also symmetries of the model. Introducing
p3 the permutation of x; and x3, and similarly p3; and pi2, one can define the three
following transformations:

I =ppl=1pxy
fr = pay p1od p1z = p12 1 prz Put
Iy = prapsid ps1 = pai f pa1 puo

corresponding to the threet inversion transformations of the model [42].

4.5. The symmetry group

Inversion I, permutations of x1, xz, ¥3, and duality relation D (defined by (4.3)) generate a
symmetry group of the parameter space of the model, denoted I'yy in the following.

At this point it is worth noticing that duality transformation D, dees actually commute
with f, and also with the group of permutations &3;. This commutation property enables us
to see Ty as a hyperbolic Coxeter group generated by two infinite-order transformations, up
to the semi-direct product by a finite group. These generically infinite-order transformations
read

Si=hi h=Ih1I B=hI. (4.11)
By definition, the J,’s satisty relation
Jy Iy Jy = Zdentity . (4.12)

Two of these J;’s generate 'y, Up to the semi-direct product by a finite group.

Let us recall that for generic values of g, when x = 1, Tyy is isomorphic to Z X Z up to
a semi-direct product by a finite group and degenerates into a finite group for Tutte-Beraha
numbers [20] (g = 2 — 2 cos(ka/N)). In fact for x = 1, the J;'s do commute and the
elements of group [y read

y=Jn where o =0,1.

Generically #; and n, are relative integers. For ¢ a Tutte—Beraha number associated with
N, ny and n; run into {0,..., N — 1}, the group I'y, being therefore isomorphic to the
pl‘OdUCt Ty X Ly X Zn.

i This existence of three involutions singles out the triangular lattice among the bi-dimensional models, from
the symmetry-group analysis point of view. Let us notice that even for involved models, like the checkerboard
Potts mode! with multispin interactions, one still gets two involutions and therefore a representation of the infinite
dihedral group.
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In order to analyse the general case (x # 1), let us introduce the 3-cycle ¢ = p3; pi2, and
let us write the J;'s in term of ¢ and a only one {(generically) infinite-order transformation,
namely (¢ /)%

Ji=c(cIPc? L= {cDc Jr=(cD)?. (4.13)

4.5.1. Transformation (c I®. For the sake of simplicity, one will consider transformation
(cI? as a homogeneous transformation, introducing x = xx;x2x3 and a fifth

homogenization variable ¢, One can then define a homogeneous inverse [, (corresponding
to (4.100):

[ x> —x1 — (g -2t
Xol — X3 X3
x—= —(lg—2)——xp
7 Xp—t
In: X3 — X2
X3 — X3
Xol —X3Xx3
-y —.
. x =t
Transformation ¢ f, then reads
[ 29 — —xy— (g —2)¢
Xy =» X3
Xpl — X2X3
X3 = —{g—2)————x
th: 2 (q ) X —1
X3 — X2
Xot — X2 %3
t = —
L Xy —1t

One notices that 43 = x; + x2+ (g —2) 1 and v3 = x3 — Xp are permuted by transformation
¢ Ir u3 < v3. With these new variables, one also has:

X = X3
cly: Xy = uz—x1 — (g —2)¢t where Fp=
t— Fyt

Xpl — X2 X3
i —1)

Transformation (¢ [,)? then reads

Uy — U3
Uy — i

(cn): xy = uz —x1 — (g —2)¢
X3 —r U3—X3—(q—2)Fof
t— R At

where Fi = Fy(c 1) is the same expression as Fp, where the x;’s have been replaced by
their images by ¢ Ij.

One can now define the successive iterates of Fy by transformation ¢ [, which will be
called F, in the following: Fh.; = Fa(¢Iy). One can also introduce new variables A,
defined as the successive products of the F’s:

An=FOF] Fz an._].
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Taking Ag = 1, one gets, for any integer n, the explicit expression of (¢ [;)?":

[ 13 — us
Uz — U3
n 1-(-1" &
X = (-D"x —— (=" (g - 2)¢ (-DFA
AT T g ‘

1— (="

n=1
U (-1 (@ —2)t ) _(-1F A Py

k=0

X3 — (—l)n X3+

| T Apt.

One can then show recursively that
X1

An—l=a, (A =D +b(g—2) 21 4.14)
the a,’s and b,,’s satisfying the following recurrences:
w1 =g =2 - 1Da,—(@-2)%b, + 1
tnp1 =((g =2~ 1)a, —(g - 2" b, + “.15)
bpiy =ay —by.
One can initiate these recurrences with ap = by = 0 (that is, Ap == 1). One then gets
1
Gy = e (AL 4 A% —2)
—4
q(q -)1 4.16)

( A l!2+ln—1/2+(q 2))

n

T4 -Hg-2)
where A are the roots of the quadratic polynomial z2 + (2 — (g — 2)*} z + 1.

Remark. One has to consider ¢ = 0 and ¢ = 4 separatelyt. Solutions of recurrences (4.15)
now read

ap = n* b,,-—-%n(n—-l).
Equation Ay = 1 has no other solution than n = 0, therefore transformation (¢ I)? is of
infinite order. Moreover, recalling the x = 1 limit, one gets that this transformation is
equivalent to some translation in the variables 1/(1 + x;).

4.5.2. Turte-Berahn numbers. Let us recall that, when there is no three-site interaction
(that is, x = 1}, there does exist particular values of g, the so-called Tutte-Beraha
numbers [20,43], for which transformations J;’s, or equivalently transformation (c 7#)?,
become finite-order transformations. Introducing ¢, the roots of the second-order equation
22+ (g —2)z +1, g corresponds to a Tutte-Beraha number when g2 are Nth-roor of unity.
In the x = 1 case, it has been shown that for these valuesi of g the J;'s are transformations
of arder N [7, 42). Amazingly, this situation still holds for the generic case (with x 5 1).

In fact, one notices that Ar = g3, so one has to calculate transformation (¢ I,)* when
A¥ = 1. In this case, relations (4.14) and (4.16) yield

ay=by =90 and Ay =1. @17

T At first sight, onie should also consider g = 2 as a particular case, In fact only a, is relevant and it is actually
given by reladon (4.16) with g = 2.
i One considers only N > 2, since for N = 1 (that is ¢ = 0 or g = 4) transformation (¢ 1)2 is of infinite order
(see remark in the previous section).



6974 J-M Maillard and G Rollet

Straightforward calculations yield

= Nt 0 LSRN’ -1
:L;;(— Yo = g_l) b= g7 (4.18)

and these relations (4.18) enable us to get

el 1— (=¥ X3 — Xy
—F Ay = (1 )
g o Ay 5 e

)ZN

Finally, one notes that x| is invariant by (¢ [3)*", as well as variable 7 (see equation (4.17)).
At first sight, one should also verify that x; is preserved by transformation (¢ 7,)2V, in fact
in the following (see section (4.6)) one will see that there exists a rational invariant under
the whole group I"yn. Since this invariant involves variable x3, it is not necessary to perform
this Jast calculation: the invariance of x; under {c [;)*¥ is a straightforward consequence
of the invariance of us3, v3, xy and ¢.

One has thus established for ¢ = 2 — 2 cos(kx/N) (a2 Tutte-Beraha number} that
transformation (¢ 1) reduces to identity, that is equivalently:
J¥ =1d with i=1,2,3. 4.19

4

Remark. Such Coxeter groups can be seen as the fundamental group of a surface of genus
g minus & points [31]. Here one has a genus-zere Riemann surface minus three points. At
this step the Coxeter group one has to deal with is reminiscent of the Schwarz’s triangular
groupst. Considering a geodesic triangle of angles w/ny, ®/nr2, m/n3, and considering
S1, 82, 53 the symmetries with respect to the edges of the triangle, and defining the
‘rotations’

=55 Ry =55 Ri=5 5
the R;’s verify

R =1d with i=1,2,3
and

RiRyRy=1d.

In the study of these triangular groups, three different cases have to be distinguished:
depending on 1/n) + 1/ny 4+ 1/n3 greater, lower or equal to 1.

Because of symmetry of our triangular Potts model we have here ny = ny =n3 = N,
The only Euclidean case is N = 3, the other values of ¥ yielding hyperbolic triangles and
hyperbolic geometries.

N = 2 corresponds to g = 2, that is, the Ising subcase of the model (for which the
three-site interaction becomes irrelevant).

Thus, the first interesting case is N =3, that is, g =1l or g = 3.

i Such groups have been obtamned from the analysis of the ratios of solutions of second-order differential equations
ramified in three points.
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Figure 1. Two-dimensional projection of an orbit of transformation (¢ 7)?, for ¢ = 3.5.

4.5.3. The Euclidean case: ¢ = I or ¢ = 3. In this section we will restrict N to N =3.
Introducing the well suited transformations

G = pi2 J1 par Ga = px3 Ja p1z G3 = pa1ds ps (4.20)

we will show that for ¥ =3, 'y, is not a group with an exponential growth anymore but
reduces dlown to Z x Z up to a semi-direct product by a finite group (like the Affine Coxeter
group A" [16)).

First, one notices that the G;’s do satisfy a relation similar to relation (4.12):

G1G,G =14d. 420

Let us first study the group G, generated by &, G; and G3. With relations (4.11) and
(4.11) the G;’s can be written in terms of transformation I and of the 3-cycle c:

Gi=ct 11 Go=I1cle  Ga=clId]. (4.22)
Using (¢ 1 = Tdentity, G| G, reads
G1Gr=cIct Il It Ie=F D=t =Iclc
= G306, (4.23)
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Figure 2. Continued.
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Thus, the G;’s acually commute. From relations (4.21) and (4.23), it is clear that a generic
element of G reads:

g= G?l G;z
where n, and n, are relative integers, which explicitly means that G is isomorphic to Z x Z.
Let us now show that Ty is isomorphic to G up to a semi-direct product by a finite
group.
I'yet can be seen to be generated by / and ¢, up to some semi-direct product by a finite
group. From relation (4.22), one gets at once

clcl=Gple? clc*l =Gs lcl=G;" ct1ti=Gec
fele=Gylé? ici =gy icflc=G, 131 =Gse.

Thus I'yy is isomorphic to G, up to a semi-direct product by a finite group, that is, isomorphic
to Z x Z up to a semi-direct product by a finite group.

4.5.4. Numerical analysis. For 0 < ¢ < 4 the infinite set of points of the orbits of the
automorphy group is dense in an algebraic curve while, in the other case, they accumulate
to fixed points, This situation has already been noticed [44] in the x = 1 subcase, Therefore
in this section, we will restrict our study to 0 < g < 4.

To complete the analysis of the symmetry group, one has to study its generically infinite-
order generators-{the J;’s). We will draw here their orbits in the four-dimensional parameter
space (CPy) of the model. From relation (4.13), it is clear that the iterations of the J;'s
amount to performing the iteration of transformation (¢ 7)2. For generic values of g (of
course different from Tutte-Beraha numbers, see section (4.5.2)), the iteration of (¢ I)°
yields curves. Figure 1 shows such a curve obtained for g = 3.5 (which is not a Tutte-
Beraha number). (In all figures, xo = 2, x| = 3, x2 = 4, x3 = 1.5, N = 100000.)

For Tutte—Beraha numbers, since the J;'s are finite-order transformations, one has to
consider other elements of the group, As far as the Buclidean case is concerned (g = 1
or g = 3), let us recall that the G;’s are the commuting generators of the symmetry group
isomorphic to Z x Z. Figure 2(a) illustrates the iteration of G; for ¢ = 3. Remarkably one
again gets curves. Of course, iterating G, for ¢ = 3 also yields curves, as can be seen in
figure 2(&). Considering one orbit of the symmetry group generated by the G,’s, we get, as
we should, a surface which can clearly be seen in figure 2(c) as the product of curves like
2(a) and (b). This last figure gives a nice illustration of the Z x Z structure of the group.
One gets similar results for the other Euclidean case g = 1; figure 2(d) shows the surface
corresponding to one orbit of the whole symmetry group generated by the G;'s.

Amazingly, the G;’s which no longer commute when g is no longer equal to 1 or 3, do
yield curves, as can be seen on figure 3, which represents the tteration of G, for g = 0.5
{which is not a Tutte-Beraha number).

All these examples are remarkable: if one consider the iteration of more involved
elements of the group, one generically gets quite chaotic figures (except for ¢ = 1 or
g = 3). Figure 4(a) shows such a ‘chaotic’ orbit for a Tutte~Beraha number (g = 2 + 3
and figure 4(&) for ¢ = 3.5 (which is not a Tutte—Beraha number). Both figures 4(a) and
() correspond to the iteration of J; J.f.

These last figures and the study of many other orbits not given here give a good hint
of the complexity of these infinite Coxeter groups. They are generically of exponential
growth, even when additional relations occur (see relation (4.19)).

This numerical stady indicates that for generic values of ¢, the generators of the
symmetry group (the J;'s) seem integrable since their iterations yield curves apparently in the
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Figure 3. Two-dimensional projection of an orbit of transformation &' for g = 0.5,

whole parameter space. Moreover. the G;"s seem to satisfy the same property for any value
of ¢, though they emerged from the analysis of the Euclidean case (g = 1 or ¢ = 3). A way
to verify this assumption is to give the algebraic equations of these curves. For this purpose,
in the next section we will seek algebraic varieties invariant under the J;'s and the G;’s.

4.6. Group invariants

Let vs first remark that there exist three (homogeneous) polynomials, of degree 1,2
and 3 respectively, invariant under permutation of x;,xz and x3, and covariant under
transformation /. These three polynomials read

Di=xi+xa+xm—x+G -2t

Dy =101+ xp + x5+ %0 — I) — Xi Xz — Xz X3 — X3 X1

Dy =1t x5 — x; X2X3.
Let us note that the cofactor (under the action of I) of D is the product of the respective
cofactors (under the action of I) of D; and Ds.
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As a consequence, one directly gets an invarian: under the group generated by [ and
the permutations of 1, 2 and 3:
pupikicy
D
This provides, for arbitrary g, a canonical foligtion of the parameter space (CFPy) by co-
dimension-one algebraic varieties.

It has been seen in the previous section that the iterations of the J4;’s yield curves in the
whole parameter space. In order to prove that these curves are actually algebraic, one has
to exhibit two other algebraic invariants for these transformations. From relations (4.13), it
is clear that one can restrict the study to transformation (c7)?. One can show that the two
polynomials

(4.24)

Er=x14+x—x3+x+(@—2)¢
Ex=t(xj+x3—xs—Xxo—1t) —x1Xs+xax3+x30
are actually covariant under the action of (c/)?. These expressions happen to have

respectively the same cofactors (under transformation (c/)?) as D; and D;. This provides
immediately two additional algebraic invariants under (cI)*:

Curves like figure 1 are thus given as intersections of cubics, quadrics and hyperplanes,
namely

A=3 Ay =6 Ay =68 (4.25)

where the &’s denote arbitrary constants,

Such algebraic curves, with an infinite number of automorphisms, are either elliptic
or rational curves [23]. Amazingly, eliminating xg and x; from relations (4.25) one gets
{coming back to inhomogeneous variables)

G+DGER+DEme-1D)=
48188 +x=+G~DE 1) K +rx—-2+¢)
which proves that these curves are actually rational curves.

The previous numerical analysis indicated remarkable occurrence of curves, when
iterating the G;’s for any value of g. Let us for instance consider G3. One notices that
polynomials

F] = X3

Fo=(xix3+xax3 —xat —xot)(x1x2+ (g —3) xot — (g —2) xox3)
are actually covariant under the action of G3. The values of the cofactors of these F's
enable us to get two (3 invariants

o) Dy Dy
Al = — Al = ——,
TR ¢ Fa

Figures like 2(@), 2(b) or 3 are thus algebraic (elliptic) curves given by intersections of
cubics, hyperplanes and quartics.

Let us recall that for g = 1 or ¢ = 3, these G;’s do commute and that: G; G, G| = Zd.
We have just seen that each of the G,’s generates algebraic elliptic curves. Therefore for
g = 1 and g = 3, the orbits of the group generated by the G;’s yield algebraic surfaces
which are products of two elliptic curves, as cleatly seen on figure 2(c). Since this surface is
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stable under permutations of x;, x2 and x3, it is natural to give its equation without referring
to two of the G s, that is, without having any direction singled out. For g = 3 an additional
polynomial

2
Dy = —xyxpxs (x5 +xf + 23 + 53 — %) + x0 (x] 12 + 23 x} + x222)

is symmetric under permutations of 1, 2 and 3 and covariant under /. Symmetric invariant
Aj=Z122 -

together with invariant (4.24) thus give symmetric equations of these algebraic surfaces.
Similarly for g = 1, polynomial

Dé = Xp Dg

is a symmetric covariant under the action of /, yielding the following symmetric invariant:

Let us now recall that duality transformation D, defined in section (4.2), is also a
symmetry of the model, which commutes with transformation 7/ and with permutations of
1,2 and 3. Let us notice that D is actually a linear transformation when written in terms
of homogeneous variables:

x> x+g-—Dxt+txantntig—-2)0
n>@-Dxi+xo—x—x3—(q—2)t
Dy : o= (g—Dxat+xo—x1—x3— (g — 21t
Bog-Duntro—xn-—xn-—-(g-2):
t—>Xxog— Xy —X2—x3+2¢.
Considering the previcus covariant polynomials, one notices that five of them are ‘eigen-
polynomials’ of the duality transformation:

D] - —4 D]

Dy — qz Dy

Ey— g E

Ey = g*E,

Dy — ¢* D,
As far as the other covariant polynomials are concemed, one has to barter them for new
homogeneons polynomials, namely

Dy =2qDy— Dy Dy

Fig =2qx;— Dy

Fag =29 F4—(g" =39+ 1) Dy (D; — x3 Do)
Dsi=2q*Ds — D} Dy

to get the self-dual covariants,

Algebraic varieties Dy, D, and Diyy; are actually remarkable since they do have
covariance properties with respect to the whole group T.n, which is (generically) a
hyperbolic group. From the point of view of effective algebraic geometry, it provides
examples of algebraic varieties with very large groups of automorphisms. Moreover these
varieties also provide examples of algebraic varieties with an infinite number of rational
points (when g is rational itself). This is a direct consequence of the representation of the
hyperbolic group T'uy in terms of birational transformations with integer coefficients with
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respect to the x;’s and g. This situation can straightforwardly be generalized to algebraic

numbers.
In the next section, we discuss the actual status of these algebraic varieties.

4.7. Remarkable algebraic varieties

Let us first recall that critical manifolds have to be compatible with all the symmetries of
the lattice model. The self-dual variety (4.6) is already known as the critical variety of
the Potts model for arbitrary ¢ in some ferromagnetic region {24]. It is also known that
this variety is, as it should be, stable under the whole hyperbolic Coxeter group [42]. One
recovers this result, noticing that this symmetric self-dual variety (4.6) is nothing but variety
Dy = 0. Conversely, the same argument confirms that the self-dual variety (4.4) cannot be
critical since it is not stable under Cyy.

Moreover in the previous section, other algebraic varieties have been shown to be stable
under the whole infinite Coxeter group, namely the vanishing conditions of the expressions:
Dy, D3y and also Dsg when g = 3. 'We do not consider here D; = 0 (for ¢ = 1) since it
reduces to the previous Dy = 0 case and to condition xp = 0 for which the analysis of the
model becomes of a more ‘combinatorial’ nature and deserves a specific study.

Variety D, = 0 was not previously known in the literature: it is a good candidate for
being a critical variety. Unfortunately, the x = 1 limit of this variety is singular for [yg
and is thus of no help to decide the status of this variety. New Monte Carlo calculations
will be performed to answer this question.

Moreover, in the x = 1 limit another algebraic variety has already been introduced
in [45]. Monte Carlo calculations of the g = 3 isotropic limit of the model have
been performed on this subvariety [46]. These siudies confirmed the existence of
an antiferromagnetic critical point (in addition to the well known ferromagnetic one)
probably corresponding to a first-order transition. Though very close to this variety in
the x = l,g = 3 isotropic region, this antiferromagnetic critical point is definitely
different [46]. This negative result does not rule out the existence of an extension of
this variety to some x # 1 domain as a critical variety in some region of the parameter
space which could depend on the value of g. This question will be addressed in further
publications.

Variety Dy = 0 is also a good candidate for criticity. Unfortunately, no partial results
are available in the literature. If one comes back to D3 = 0, which is not self-dual, this
condition corresponds to the vanishing of the three-spin interaction (x = 1). Variety x = 1
is well known [36] and plays a special role: the symmetry group Iy, is isomorphic to Z x Z
(up to some semi-direct product by a finite group). Since duality D commutes with Ty,
the dual variety of x = 1 also corresponds to the degeneracy of Ty into a group isomorphic
to Z x Z {up to some semi-direct product by a finite group). This remarkable variety (4.7)
also reads

D:=¢’(@D:—DiD;)=0  orequivalently A=g. (4.26)

Finally for g = 3, the vanishing condition of the self-dual expression Dsg, as well as
condition D5 = 0 and its duval variety, also requires further studies.

Clearly one needs further Monte Carlo simulations, with a particular emphasis on
the Euclidean case g = 3. One will try to see if, besides the known variety Dy = 0,
others of the above-mentioned algebraic varieties are actually critical. As far as phase
diagrams are concerned, the intersections of these algebraic varieties could play a special
role {multicritical points ?...). Note that Dy = 0 and Dy = 0 do have intersection points
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in the ferromagnetic domain.

Let us recall that other remarkable varieties have been mentioned in section (4.3): the
disorder varieties (4.8). The analysis of the action of the hyperbolic group on these varieties
has also to be performed, in order to generalize the analysis already achieved in the x = 1
limit [38]. -

5. Conclusion

The symmetry group generated by inversion relations has been analysed for vertex triangular
lattice models and for the standard scalar Potts mode! with two- and three-site interactions
on the triangular lattice. The group generated by three involutions is seen to be generically
a very large one, like a free group. Two situations for which the representations of
this group degenerate into smaller ones, hopefully compatible with integrability, have
been considered. The first reduction for the vertex triangular model corresponds to the
situation where the vertex of the triangular model coincides with the left- or right-hand
sides of a Yang-Baxter relation. The representation of the group is isomorphic, up to a
semi-direct product by a finite group, to Z x Z. The second reduction for g-state Potts
models occurs for particular values of g, the so-called Tutte-Beraha numbers [20,43].
For these values of ¢, some of the (generically infinite-order) generators are of finite:
order. However, even with such additional relations on the generators, one still gets
groups an with exponential growth, except for ¢ = 1 or 3. Nevertheless such additional
relations on the generators occur on particular algebraic varieties, yielding a degeneracy
of the group into products of Z. We have seen in this paper that x = 1 and its dual
variety (4.26) are such varieties. It would be interesting to search systematically for these
varieties.

As far as this Potts mode] is concerned, a set of algebraic varieties stable under
hyperbolic Coxeter groups has emerged. In particular, one recovers the self-dual algebraic
variety, known as critical in some ferromagnetic region. These new resuits strongly suggest
further Monte Carlo calculations to clarify the phase diagram of the model.

As a byproduct, this analysis provides nice birational representations of hyperbolic
Coxeter groups and also algebraic varieties having such large groups of automorphisms.

This first analysis of hyperbolic Coxeter symmetry groups for lattice models, including
degeneracy subcases, should help us to better understand the symmetries of three-
dimensional models and the occurrence of true three-dimensional integrability.
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